Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

High Speed Fiber-Based Quantum Key Distribution Using Polarization Encoding

Published

Author(s)

Xiao Tang, Lijun Ma, Alan Mink, Anastase Nakassis, Barry J. Hershman, J Bienfan, Ronald Boisvert, Charles W. Clark, Carl J. Williams

Abstract

The n-qubit concurrence canonical decomposition (CCD) is a generalization of the two-qubit canonical decomposition SU(4)=[SU(2) (x) SU(2)] ? [SU(2) (x) SU(2)], where ? is the commutative group which phases the maximally entangled Bell basis. A prequel manuscript creates the CCD as a particular example of the G=KAK metadecomposition theorem of Lie theory. We hence denote it by SU(2n)=KAK. If Cn(|?)= &< ?*| (-isy) (x)n| ?>| is the concurrence entanglement monotone, then computations in the K group are symmetries of a related bilinear form and so do not change the concurrence. Hence for a quantum computation v=k1 a k2, analysis of a in e A allows one to study one aspect of the entanglement dynamics of the evolution v, i.e. the concurrence dynamics. Note that analysis of such an a in e A is simpler than the generic case, since A is a commutative group whose dimension is exponentially less than that of SU(N). In this manuscript, we accomplish three main goals. First, we expand upon the treatment of the odd-qubit case of the sequel, in that we (i) present an algorithm to compute the CCD in case n=2p-1 and (ii) characterize the maximal odd-qubit concurrence capacity in terms of convex hulls. Second, we interpret the CCD in terms of a time-reversal symmetry operator, namely the quantum bit flip |?> ? (-i sy) (x)n | ?*>. In this context, the CCD allows one to write any unitary evolution as a two-term product of a time-reversal symmetric and anti-symmetric evolution; no Trotterization is required. Finally, we use these constructions to study time-reversal symmetric Hamiltonians. In particular, we show that any | ?> in the ground state of such an H must either develop a Kramer's degeneracy or be maximally entangled in the sense that Cn(| ?>)=1. Many time-reversal symmetric Hamiltonians are known to be nondegenerate and so produce maximally concurrent ground states.
Citation
Optics Express

Citation

Tang, X. , Ma, L. , Mink, A. , Nakassis, A. , Hershman, B. , Bienfan, J. , Boisvert, R. , Clark, C. and Williams, C. (2005), High Speed Fiber-Based Quantum Key Distribution Using Polarization Encoding, Optics Express, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=150090 (Accessed October 16, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created September 30, 2005, Updated October 12, 2021