Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

High-current dc power transmission in flexible RE-Ba2Cu3O7-δ coated conductor cables



Daniel C. van der Laan, Loren F. Goodrich, Timothy J. Haugan


Transmission cables made from high-temperature superconductors have been successfully demonstrated within the electric power grid. These cables carry an ac current of up to 3,000 A in a much smaller size than conventional transmission lines, but they are not flexible enough for certain applications that involve very tight cable bends. Certain on-board Air Force applications require 5 MW of dc power transmission at 270 V and 18,500 A and would benefit from superconducting transmission in lightweight, flexible cables that would be cooled with helium gas to about 55 K. To address these needs, we have constructed a 10 mm diameter RE-Ba2Cu3O7-δ (RE = rare earth) coated conductor cable that is lighter and more flexible than the current generation of superconducting cables, and that has a critical current of 7,561 A at 76 K. The cable is expected to have a critical current of more than 20,000 A at 55 K and therefore will likely exceed the requirements for 5 MW on-board power transmission. The cable consists of two electrically insulated phases that can be operated in different modes, which allows us to study the effect of self-field on the cable performance.
Superconductor Science and Technology


van, D. , Goodrich, L. and Haugan, T. (2011), High-current dc power transmission in flexible RE-Ba<sub>2</sub>Cu<sub></sub>3O<sub>7-&#948;</sub> coated conductor cables, Superconductor Science and Technology (Accessed June 23, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created December 1, 2011, Updated February 19, 2017