NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Gradient Decomposition Methods for Training Neural Networks with Non-Ideal Synaptic Devices
Published
Author(s)
Junyun Zhao, Siyuan Huang, Osama Yousuf, Yutong Gao, Brian Hoskins, Gina Adam
Abstract
While promising for high capacity machine learning accelerators, memristor devices have non-idealities that prevent software-equivalent accuracies when used for online training. This work uses a combination of Mini-Batch Gradient Descent (MBGD) to average out gradients, stochastic rounding to avoid vanishing weight updates, and decomposition methods to keep the memory overhead low during mini-batch training. Since the weight update has to be transferred to the memristor matrices efficiently, we also investigate the impact of reconstructing the gradient matrixes both internally (rank-seq) and externally (rank-sum) to the memristor array. Our results show that streaming batch principal component analysis (streaming batch PCA) and non-negative matrix factorization (NMF) decomposition algorithms can achieve near MBGD accuracy in a memristor-based multi-layer perceptron trained on MNIST with only 3 ranks at significant memory savings. Moreover, NMF rank-seq outperforms streaming batch PCA rank-seq at low-ranks making it more suitable for hardware implementations in memristor accelerators.
Zhao, J.
, Huang, S.
, Yousuf, O.
, Gao, Y.
, Hoskins, B.
and Adam, G.
(2021),
Gradient Decomposition Methods for Training Neural Networks with Non-Ideal Synaptic Devices, Frontiers in Neuroscience, [online], https://doi.org/10.3389/fnins.2021.749811, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932867
(Accessed October 10, 2025)