Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

GPS Jamming and GPS Carrier-Phase Time Transfer



Jian Yao, Marc A. Weiss, Charles Curry, Judah Levine


This paper studies the impact of GPS jamming on GPS carrier-phase time transfer. To study this issue, at NIST, we have installed a commercial GPS jamming detector since 2014 April. During 2014 April – 2015 April, the detector detected more than 100 jamming events, though there had been a few outages of jamming detection. The jamming events usually last for less than 2 min. We find that almost all jamming events lead to a significant drop in the L1 signal-to-noise ratio (SNR) for all observable GPS satellites. Another thing we notice is that the 3 GPS receivers which are closer to Broadway, a main street in Boulder, Colorado, are more likely to be jammed. This indicates that the jamming source may come from cars passing by. Although a jamming event causes a significant drop in L1 SNR, the GPS receiver can still track the GPS satellites properly for most cases. However, sometimes, the jamming can be too strong and then a GPS receiver may lose track of some GPS satellites. This leads to a GPS-data anomaly. Because of this anomaly, the carrier-phase time transfer processing re-estimates the phase ambiguities at the anomaly. Thus, there is often a time discontinuity at the anomaly. The discontinuity ranges from a few hundred picoseconds to a few nanoseconds. Then the next question is what we shall do when a jamming event occurs? Our earlier study [1] shows that the 9th-order polynomial curve fitting for the code and phase measurements can repair a short-term data anomaly (
Proceedings Title
Precise Time and Time Interval Meeting 2016
Conference Dates
January 25-28, 2016
Conference Location
Monterey, CA
Conference Title
The Precise Time and Time Interval Systems and Applications (PTTI) meeting


GPS carrier-phase time transfer, GPS jamming


Yao, J. , Weiss, M. , Curry, C. and Levine, J. (2016), GPS Jamming and GPS Carrier-Phase Time Transfer, Precise Time and Time Interval Meeting 2016, Monterey, CA (Accessed September 30, 2023)
Created January 25, 2016, Updated February 19, 2017