NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A Generalized Data-Driven Energy Prediction Model with Uncertainty for a Milling Machine Tool using Gaussian Process
Published
Author(s)
Jinkyoo Park, Raunak Bhinge, Nishant Biswas, Amrita Srinivasan, Kincho H. Law, David Dornfeld, Moneer Helu, Sudarsan Rachuri
Abstract
Using a machine learning approach, this study investigates the effects of machining parameters on the energy consumption of a milling machine tool, which would allow selection of optimal operational strategies to machine a part with the minimum energy. Data-driven prediction models, built upon a nonlinear regression approach, can be used to gain an understanding of the effects of machining parameters on energy consumption. In this study, we use the Gaussian Process to construct the energy prediction model for a CNC milling machine tool. Energy prediction models for different machining operations are constructed based on collected data. With the collected data sets, optimum input features for model selection are identified. We demonstrate how the energy prediction models can be used to compare the energy consumption for the different operations and to estimate the total energy usage for machining a generic part. We also present an uncertainty analysis to develop confidence bounds for the prediction model and to provide an insight into the vast parameter space and training required to improve the accuracy of the model. Generic parts are machined to test and validate the prediction model constructed using the Gaussian Process and we consistently achieve an accuracy of over 95% on the total predicted energy.
Proceedings Title
Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference
Conference Dates
June 8-12, 2015
Conference Location
Charlotte, NC, US
Conference Title
ASME 2015 International Manufacturing Science and Engineering Conference (MSEC2015)
Park, J.
, Bhinge, R.
, Biswas, N.
, Srinivasan, A.
, Law, K.
, Dornfeld, D.
, Helu, M.
and Rachuri, S.
(2015),
A Generalized Data-Driven Energy Prediction Model with Uncertainty for a Milling Machine Tool using Gaussian Process, Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference, Charlotte, NC, US, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=917589
(Accessed October 10, 2025)