Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

General Expression for the Effective Mass in the One-Dimensional Treatment of Tunneling Corrections



Carlos A. Gonzalez, Thomas C. Allison, F Louis


A simple and general formalism for the claculation of the effective mass necessary for the computation of tunneling corrections by simple one-dimensional models is presented. It is shown that this formalism does not require a priory assumptions regarding the molecularity of the reaction or the relative orientation of the reactive fragments. This method which we call the Generalized Polyatomic Method, GPM, was used to compute tunneling corrections using the simple Wigner tunneling formalism for the six reactions: H' + H-H --> H'-H+H, CH4 + H --> CH3 + H2, CH4 + OH --> CH3 + H2O, CH3-CH3 + OH --> CH3-CH2 + H2O and HCN --> CNH. The results obtained in this work indicate that using the reduced mass from a direct vibrational analysis of the transition state instead of the effective mass could lead to serious errors in the computation of tunneling corrections. This result is very critical given the popularity of this procedure among researchers computing tunneling corrections in gas-phase reactions. Finally, it is also shown that the simple collinear tri-atomic approach (CTM) developed by Johnston is a special case of our more general GPM method. Given its simplicity and computational efficiency we recommend GPM as the method of choice when computing effective masses to be used in one-dimensional tunneling conditions.
Journal of Physical Chemistry A
No. 49


ab initio, potential energy surface, reaction path, tunneling kinetics


Gonzalez, C. , Allison, T. and Louis, F. (2001), General Expression for the Effective Mass in the One-Dimensional Treatment of Tunneling Corrections, Journal of Physical Chemistry A (Accessed July 23, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created December 1, 2001, Updated February 17, 2017