NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Fuzzy-Logic-Based Approach for Identifying Objects of Interest in the PRIDE Framework
Published
Author(s)
Zeid Kootbally, Craig I. Schlenoff, Rajmohan Madhavan, Sebti Foufou
Abstract
On-road autonomous navigation of autonomous vehicles requires real--time motion planning in the presence of moving objects. Based on sensed data of moving objects in the environment and the situation it finds itself in, an autonomous vehicle has to plan a path by evaluating the future location of objects of interest. In this context, an object of interest is a moving or stationary object in the environment that has a reasonable probability of intersecting the path of the autonomous vehicle within a predetermined time frame. In this paper we investigate how situation awareness may be used to identify and select appropriate objects of interest in order to plan collision free paths. We include the concept of Dangerous Zone around a moving vehicle. Each object in the Dangerous Zone does not represent the same level of danger, and thus we use an approach based on the Fuzzy Space concept to affect a degree of risk to each object within the Dangerous Zone. Furthermore, using the high-fidelity physics-based framework for the Unified System for Automation and Robot Simulation (USARSim), we show the impact of the appropriate selection of objects of interest in term of driving by simulating different scenarios with the PRIDE (PRediction In Dynamic Environments) algorithms. PRIDE is a multi-resolutional, hierarchical framework that predicts the future location of moving objects for the purposes of path planning and collision avoidance for an autonomous vehicle.
Proceedings Title
Proceedings of the 2008 Performance Metrics for Intelligent Systems (PerMIS) Workshop
Kootbally, Z.
, Schlenoff, C.
, Madhavan, R.
and Foufou, S.
(2008),
Fuzzy-Logic-Based Approach for Identifying Objects of Interest in the PRIDE Framework, Proceedings of the 2008 Performance Metrics for Intelligent Systems (PerMIS) Workshop, Gaithersburg, MD, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=824736
(Accessed October 8, 2025)