An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Full Disk Encryption: Bridging Theory and Practice
Published
Author(s)
Louiza Khati, Nicky Mouha, Damien Vergnaud
Abstract
We revisit the problem of Full Disk Encryption (FDE), which refers to the encryption of each sector of a disk volume. In the context of FDE, it is assumed that there is no space to store additional data, such as an IV (Initialization Vector) or a MAC (Message Authentication Code) value. We formally define the security notions in this model against chosen-plaintext and chosen-ciphertext attacks. Then, we classify various FDE modes of operation according to their security in this setting, in the presence of various restrictions on the queries of the adversary. We will find that our approach leads to new insights for both theory and practice. Moreover, we introduce the notion of a diversifier, which does not require additional storage, but allows the plaintext of a particular sector to be encrypted to different ciphertexts. We show how a 2-bit diversifier can be implemented in the EagleTree simulator for solid state drives (SSDs), while decreasing the total number of Input/Output Operations Per Second (IOPS) by only 4%.
Khati, L.
, Mouha, N.
and Vergnaud, D.
(2017),
Full Disk Encryption: Bridging Theory and Practice, CT-RSA 2017 - RSA Conference Cryptographers' Track, San Francisco, CA, US, [online], https://doi.org/10.1007/978-3-319-52153-4_14, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922365
(Accessed September 20, 2024)