Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Forward and Inverse design of high $T_C$ superconductors with DFT and deep learning

Published

Author(s)

Daniel Wines, Kevin Garrity, Tian Xie, Kamal Choudhary

Abstract

We developed a multi-step workflow for the discovery of next-generation conventional superconductors. 1) We started with a Bardeen–Cooper–Schrieffer (BCS) inspired pre-screening of 55000 materials in the JARVIS-DFT database resulting in 1736 materials with high Debye temperature and electronic density of states at the Fermi-level. 2) Then, we performed density functional theory (DFT) based electron-phonon coupling calculations for 1058 materials to establish a systematic database of superconducting properties. 3) Further, we applied forward deep-learning (DL) using atomistic line graph neural network (ALIGNN) models to predict properties faster than direct first-principles computations. Notably, we find that by predicting the Eliashberg function as an intermediate quantity, we can improve the model performance versus a direct DL prediction of $T_C$. Finally, 4) we used an inverse deep-learning method with a crystal diffusion variational autoencoder (CDVAE) model to generate thousands of new superconductors with high chemical and structural diversity. 5) We screened these CDVAE-generated structures using ALIGNN to identify candidates that are stable with high $T_C$. 6) We verified the top superconducting candidates with DFT.
Proceedings Title
ML4Materials from Molecules to Materials (Virtual)
Conference Dates
May 4, 2023
Conference Location
Kigali , RW
Conference Title
ICLR, https://www.ml4materials.com/

Citation

Wines, D. , Garrity, K. , Xie, T. and Choudhary, K. (2023), Forward and Inverse design of high $T_C$ superconductors with DFT and deep learning, ML4Materials from Molecules to Materials (Virtual), Kigali , RW, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936649 (Accessed October 9, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created April 21, 2023, Updated September 25, 2023
Was this page helpful?