NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
First-Principles Diffusivity Ratios for Kinetic Isotope Fractionation of Water in Air
Published
Author(s)
Robert Hellmann, Allan H. Harvey
Abstract
Kinetic isotope fractionation between water vapor and liquid water or ice depends on the ratio of the diffusivities of the isotopic species in air, but there is disagreement as to the values of these ratios and limited information about their temperature dependence. We use state-of- the-art intermolecular potential-energy surfaces for the water-nitrogen and water-oxygen pairs, along with the kinetic theory of molecular gases, to calculate from first principles the diffusivities of water isotopologues in air. The method has sufficient precision to produce accurate diffusivity ratios. For the HDO/H2O ratio, we find that the hard-sphere kinetic theory often used in the literature is significantly in error, and confirm the 1978 experimental result of Merlivat. For the ratios involving 17O and 18O, the simple kinetic theory is relatively close to our more rigorous results. We provide diffusivity ratios from 190 K to 500 K, greatly expanding the range of temperatures for which these ratios are available.
Hellmann, R.
and Harvey, A.
(2020),
First-Principles Diffusivity Ratios for Kinetic Isotope Fractionation of Water in Air, Geophysical Research Letters, [online], https://doi.org/10.1029/2020GL089999, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930541
(Accessed October 9, 2025)