Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Fibers, Percolation, and Spalling of High-Performance Concrete



Dale P. Bentz


While the strength and durability of high performance concretes (HPCs) are often greatly superior to conventional concretes under ambient conditions, their failure is sometimes rapid and dramatic during exposure to a fire, characterized by the explosive spalling of layers from the exposed concrete surface. This failure mode is rarely encountered in conventional concretes of higher w/c ratios. In these concretes, it is suggested that the interfacial transition zones (ITZs) surrounding each aggregate particle provide a convenient escape route for the vapor built up during the thermal exposure. In HPC, these ITZ regions are thinner and not percolated, but can be repercolated by the addition of just a few (0.2 to 0.5% by volume) fibers. Here, simulations are conducted to determine the relative efficiency of different length fibers in creating a percolated network, and to investigate the effects of aggregate volume fraction and gradation on ITZ percolation.
Aci Materials Journal Journal
No. 3


building technology, fibers, high performance concrete, interfacial transition zone, microstructure, permeability, simulation, spalling


Bentz, D. (2000), Fibers, Percolation, and Spalling of High-Performance Concrete, Aci Materials Journal Journal, [online], (Accessed April 16, 2024)
Created May 1, 2000, Updated February 19, 2017