Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

A fast simple algorithm for computing the potential of charges on a line

Published

Author(s)

Zydrunas Gimbutas, Nicholas F. Marshall, Vladimir Rokhlin

Abstract

We present a fast method for evaluating expressions of the form $$ u_j = \sum_{i = 1,i \not = j}^n \frac{\alpha_i}{x_i - x_j}, \quad \text{for} \quad j = 1,\ldots,n, $$ where $\alpha_i$ are real numbers, and $x_i$ are points in a compact interval of $\mathbb{R}$. This expression can be viewed as representing the electrostaticpotential generated by charges on a line in $\mathbb{R}^3$. While fast algorithms for computing the electrostatic potential of general distributions of charges in $\mathbb{R}^3$ exist, in a number of situations in computational physics it is useful to have a simple and extremely fast method for evaluating the potential of charges on a line; we present such a method in this paper, and report numerical results for several examples.
Citation
Applied and Computational Harmonic Analysis

Keywords

Fast multipole method, Chebyshev system, generalized Gaussian quadrature

Citation

Gimbutas, Z. , Marshall, N. and Rokhlin, V. (2020), A fast simple algorithm for computing the potential of charges on a line, Applied and Computational Harmonic Analysis, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=928101 (Accessed October 14, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created July 9, 2020, Updated July 10, 2020
Was this page helpful?