NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Fabrication of 3D Printed Hydroxyapatite Composite Scaffolds for Bone Regeneration
Published
Author(s)
Yoontae Kim, Eun-Jin Lee, Albert Davydov, Stanislav Frakhtbeyen, Jonathan Seppala, Laurence Chow, Tagaki Shozo, Stella Alimperti
Abstract
Additive biomanufacturing has been adapted in a wide variety of biomedical and tissue engineering applications, including orthopedics. The ability to print biocompatible, patient-specific geometries with controlled porosity, mechanical strength has made three-dimensional (3D) printing ideal for bone grafting. Herein, a 3D bio-compatible polymer/hydroxyapatite composite scaffold was printed using calcium phosphate cement (CPC) slurries at room temperature. The CPC slurries (bio-inks) were composed by a mixture of a solid phase that includes a mixture of tetracalcium phosphate (TTCP; Ca4(PO4)2O) and dicalcium phosphate anhydrous (DCPA; CaHPO4), and a liquid phase that includes a Polyvinyl butyral (PVB) in Ethanol (EtOH) or Tetrahydrofuran (THF). The CPC slurries were successfully printed in sodium phosphate (Na2HPO4) bath, which performed as a hardening accelerator. The 3D printed scaffolds thoroughly demonstrated different geometry, microstructure, mechanical properties, and osteoconductivity. Overall, this proof-of-concept study provides a facile way to engineer transplantable biomimetic osteoscaffolds with determined properties, which support proper bone regeneration and mechanical support in different anatomic locations.
Kim, Y.
, Lee, E.
, Davydov, A.
, Frakhtbeyen, S.
, Seppala, J.
, Chow, L.
, Shozo, T.
and Alimperti, S.
(2021),
Fabrication of 3D Printed Hydroxyapatite Composite Scaffolds for Bone Regeneration, Biomedical Materials, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930560
(Accessed October 14, 2025)