Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Extinguishment of Methane Diffusion Flames by Carbon Dioxide in Coflow Air and Oxygen-Enriched Microgravity Environments

Published

Author(s)

F Takahashi, Gregory T. Linteris

Abstract

Microgravity experiments and computations have been conducted to elucidate stabilization and extinguishment mechanisms of methane diffusion flames, in the cup-burner configuration, with CO2 added gradually to a coflowing air or oxygen-enriched stream. The minimum extinguishing concentration of CO2 under low oxidizer velocities (< 20 cm/s) were measured in microgravity achieved by parabolic flights of the NASA Reduced Gravity Aircraft. Transient computations with full chemistry and a gray-gas radiation model were performed to reveal the detailed flame structure and extinguishment processes. To compensate for the overestimation of radiative heat losses at high concentrations of radiating CO2, the Plank-mean absorption coefficient was multiplied by a correction factor (0 less than or equal to} C less than or equal to} 1). The fuel-lean peak reactivity spot (the so-called reaction kernel) at the flame base stabilized the trailing diffusion flame. The calculated temperature along the trailing flame decreased downstream due to radiative cooling, leading to local extinction at < 1300 K and flame tip opening. As CO2 was added to the oxidizer: (1) the calculated maximum flame temperature decreased toward a threshold (approximately equal}1600 K); (2) the reaction kernel weakened (i.e., lower heat release rate) but nonetheless remained at a nearly constant temperature (approximately equal}1450 K); (3) the flame base stabilized increasingly higher above burner rim, parallel to the axis; until finally, (4) blowoff-type extinguishment occurred. In the lifted flame, the broadened reaction kernel supported a superlean reaction branch on the oxidizer side as well as the trailing diffusion flame on the fuel-rich side (no triple flame structure was formed).
Citation
Combustion and Flame
Volume
155
Issue
No. 1/2

Keywords

Diffusion flame stabilization, Spacecraft fire suppression, Carbon dioxide, Reaction kernel, Microgravity

Citation

Takahashi, F. and Linteris, G. (2009), Extinguishment of Methane Diffusion Flames by Carbon Dioxide in Coflow Air and Oxygen-Enriched Microgravity Environments, Combustion and Flame (Accessed February 26, 2024)
Created February 1, 2009, Updated October 12, 2021