Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Experimental Violation of Bell's Inequalities with Efficient Detection



M A. Rowe, D Kielpinski, V Meyer, C A. Sackett, Wayne M. Itano, C Monroe, David J. Wineland


Local realism is the idea that objects have definite properties whether or not they are measured, and that measurements of these properties are not affected by events taking place sufficiently far away. Einstein, Podolsky and Rosen used these reasonable assumptions to conclude that quantum mechanics is incomplete. Starting in 1965, Bell and others constructed mathematical inequalities whereby experimental tests could distinguish between quantum mechanics and local realistic theories. Many experiments have since been done that are consistent with quantum mechanics and inconsistent with local realism. But these conclusions remain the subject of considerable interest and debate, and experiments are still being refined to overcome 'loopholes' that might allow a local realistic interpretation. Here we have measured correlations in the classical properties of massive entangled particles (9Be+ ions): these correlations violate a form of Bell's inequality. Our measured value of the appropriate Bell's 'signal' is 2:25 6 0:03, whereas a value of 2 is the maximum allowed by local realistic theories of nature. In contrast to previous measurements with massive particles, this violation of Bell's inequality was obtained by use of a complete set of measurements. Moreover, the high detection efficiency of our apparatus eliminates the so-called 'detection' loophole.


Rowe, M. , Kielpinski, D. , Meyer, V. , Sackett, C. , Itano, W. , Monroe, C. and Wineland, D. (2001), Experimental Violation of Bell's Inequalities with Efficient Detection, Nature, [online], (Accessed April 20, 2024)
Created December 31, 2000, Updated October 12, 2021