NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
An Experimental and Computational Study of CO2 Adsorption in the Sodalite-Type M-BTT (M = Cr, Mn, Fe, Cu) Metal-Organic Frameworks Featuring Open Metal Sites
Published
Author(s)
Mehrdad Asgari, Sudi Jawahery, Eric D. Bloch, Matthew R. Hudson, Roxana Flacau, Bess Vlaisavljevich, Jeffrey R. Long, Craig Brown, Wendy L. Queen
Abstract
We present a comprehensive investigation of the CO2 adsorption properties of the isostructural series of metal-organic frameworks M-BTT (M =Cr, Mn, Fe, Cu, BTT3- = 1,3,5-benzenetristetrazolate), which exhibit a high density of open metal sites capable of polarizing and binding guest molecules. Coupling gas adsorption measurements with in situ neutron and x-ray diffraction experiments provides molecular-level insight into the adsorption process and enables rationalization of the observed adsorption isotherms. In particular, structural data confirms that the high initial isoteric heats of CO2 adsorption for the series are directly correlated with the presence of open metal sites and further reveals the positions and orientations of many as three additional adsorption sites. Density functional theory calculations that include van der Waals dispersion corrections quantitatively support the observed structural features associated with the primary and secondary CO2 binding sites, including CO2 positions and orientations, as well as the experimentally determined isosteric heats of CO2 adsorption.
Asgari, M.
, Jawahery, S.
, Bloch, E.
, Hudson, M.
, Flacau, R.
, Vlaisavljevich, B.
, Long, J.
, Brown, C.
and Queen, W.
(2018),
An Experimental and Computational Study of CO<sub>2</sub> Adsorption in the Sodalite-Type M-BTT (M = Cr, Mn, Fe, Cu) Metal-Organic Frameworks Featuring Open Metal Sites, Chemical Science, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=925613
(Accessed October 26, 2025)