NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
An Experimental and Computational Study of Approach Air Distribution for Slanted and A-Shaped Finned-Tube Heat Exchangers
Published
Author(s)
David A. Yashar, Piotr A. Domanski, Hong Hyun Cho
Abstract
One of the most influential factors of the performance of a finned tube heat exchanger is the distribution of the air passing through it; therefore it must be known in order to produce a highly efficient design. We examined two different common style air-to-refrigerant, finned-tube heat exchangers in this study; a single slab coil oriented at an angle of 65º to the duct wall and an A-Shaped coil with an apex angle of 34º. We used Particle Image Velocimetry (PIV) to measure their in-situ air flow distributions. The results show that the air flow distributions for both of these heat exchangers are highly nonuniform with different sections subject to vastly different air velocities. We also used a momentum resistance based CFD approach to model the air flow distributions through these heat exchangers and the results agreed with the measured values, with most of the simulated velocities within 10 % of the measured velocities. The results of this study show that the velocity profile for any configuration is strongly influenced by the geometrical features of the heat exchanger and other features in its proximity, and therefore each installation configuration will have its own unique velocity distribution. The information presented in this paper documents several features of inherently maldistributed air flowing through finned-tube heat exchangers and highlights its sources and magnitude.
Yashar, D.
, Domanski, P.
and , H.
(2014),
An Experimental and Computational Study of Approach Air Distribution for Slanted and A-Shaped Finned-Tube Heat Exchangers, Hvac&R Research, [online], https://doi.org/10.1080/10789669.2014.899466
(Accessed October 8, 2025)