Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Evaluation of a thermo-mechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V



Rishi Ganeriwala, Maria Strantza, Wayne King, Bjorn Clausen, Thien Q. Phan, Lyle E. Levine, Donald W. Brown, Niel Hodge


The build-up of residual stress in a part during laser powder bed fusion provides a significant limitation to the adoption of this process. These residuals stresses may cause a part to fail during a build or fall outside the specified tolerances after fabrication. In this work a thermo-mechanical model is used to simulate the residual stress state for Ti-6Al-4V specimens built with continuous vs. island scan strategies. An agglomeration, or lumping, approach is used to speed up the computations. A material model is developed to naturally capture the strain-rate dependence and annealing behavior of Ti-6Al-4V at elevated temperatures. Results from the thermo-mechanical simulations showed good agreement with X-ray diffraction measurements used to determine the residual elastic strains in these parts. However, the experimental measurements showed higher residual strains for the specimen built with an island scan strategy; a trend not fully captured by the simulations. Parameter studies were performed to fully understand the advantages and limitations of the current simulation methodology. Reasons for both the computational and experimental findings are discussed.
Additive Manufacturing


additive manufacturing, residual stress, thermo-mechanical modeling, Ti-6Al-4V


Ganeriwala, R. , Strantza, M. , King, W. , Clausen, B. , Phan, T. , Levine, L. , Brown, D. and Hodge, N. (2019), Evaluation of a thermo-mechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V, Additive Manufacturing, [online], (Accessed June 21, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created April 1, 2019, Updated October 12, 2021