NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Estimations of the effective Young's modulus of specimens prepared by fused filament fabrication
Published
Author(s)
Lichen Fang, Yishu Yan, Ojaswi Agarwal, Jonathan Seppala, Kalman D. Migler, Thao D. Nguyen, Kevin Hemker, Sung Hoon Kang
Abstract
The elastic response of homogeneous isotropic materials is most commonly represented by their Young's modulus (E), but geometric variability associated with additive manufacturing results in materials that are neither homogeneous nor isotropic. Here we investigated methods to estimate the effective elastic modulus (Eeff) of samples fabricated by fused filament fabrication. We conducted finite element analysis (FEA) on printed samples based on material properties and CT-scanned geometries. The analysis revealed how the layer structure of a specimen altered the internal stress distribution and the resulting Eeff. We also investigated different empirical methods to estimate Eeff as guides. We envision the findings from our study can provide guidelines for modulus estimation of as-printed specimens, with the potential of applying to other extrusion-based additive manufacturing technologies.
Fang, L.
, Yan, Y.
, Agarwal, O.
, Seppala, J.
, Migler, K.
, Nguyen, T.
, Hemker, K.
and Kang, S.
(2021),
Estimations of the effective Young's modulus of specimens prepared by fused filament fabrication, Scripta Materialia, [online], https://doi.org/10.1016/j.addma.2021.101983, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930009
(Accessed October 13, 2025)