Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Estimating the Number of Manually Segmented Cellular Objects Required to Evaluate the Accuracy of a Segmentation Algorithm



Adele P. Peskin, Joe Chalfoun, John T. Elliott, Karen Kafadar


We propose a new strategy for estimating the number of cellular objects that should be manually segmented for evaluating the segmentation accuracy of an algorithm. The strategy uses geometric and edge quality measurements that are directly related to segmentation outcomes and do not require highly accurate segmentation. Sample sizes are determined from standard deviations of cell feature measurements calculated from the entire image set rather than a small sample of that set. We estimate the confidence level that a sample size represents the whole population as well as an error associated with a particular sample of cell images. The use of this strategy may reduce the effort and time required for generating a reference data set for evaluating segmentation algorithm performance with images of biological cells. We demonstrate the usefulness of this methodology on a large and diverse data set for which reference data is available. We show that other techniques give rise to inconsistent results because the standard deviation of the data for the whole population is unknown, while our technique involves calculations that give consistently accurate sample sizes.
Proceedings Title
Proceedings of ACM BCB 2013
Conference Dates
September 22-25, 2013
Conference Location
Washington, DC


feature extraction, sample size, segmentation


Peskin, A. , Chalfoun, J. , Elliott, J. and Kafadar, K. (2013), Estimating the Number of Manually Segmented Cellular Objects Required to Evaluate the Accuracy of a Segmentation Algorithm, Proceedings of ACM BCB 2013, Washington, DC (Accessed May 30, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created September 22, 2013, Updated February 19, 2017