NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Enhanced carrier transport along edges of graphene devices
Published
Author(s)
Jungseok Chae, Suyong S. Jung, Sungjong Woo, Hongwoo Baek, Jeonghoon Ha, Young J. Song, Young-Woo Son, Nikolai Zhitenev, Joseph A. Stroscio, Young Kuk
Abstract
The relation between the macroscopic charge transport properties and the microscopic carrier distribution inside conducting channels is one of the central issues in physics and future applications of graphene devices (GDs). With scanning gate microscopy (SGM) - a powerful experimental tool to probe the transport properties of a device through local gating, we find strong local charge accumulation at the edges of a GD. At high carrier densities, SGM signals are an order of magnitude larger at the edges of GDs than inside the bulk channel. We developed a theoretical model relating the conductance enhancement observed at the edges of GDs to the opening of an additional conduction channel. The channel is induced by the band bending of graphene edge states caused and controlled by the edge-charge accumulation and the local tip-gating effect.
Chae, J.
, Jung, S.
, Woo, S.
, Baek, H.
, Ha, J.
, Song, Y.
, Son, Y.
, Zhitenev, N.
, Stroscio, J.
and Kuk, Y.
(2012),
Enhanced carrier transport along edges of graphene devices, Nano Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906187
(Accessed October 10, 2025)