NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
An Elementary Proof of Private Random Number Generation from Bell Inequalities
Published
Author(s)
Carl A. Miller
Abstract
The field of device-independent quantum cryptography has seen enormous success in the past several years, including security proofs for key distribution and random number generation that account for arbitrary imperfections in the devices used. Full security proofs in the field so far are long and technically deep. In this paper we show that the concept of the mirror adversary can be used to simplify device-independent proofs. We give a short proof that any bipartite Bell violation can be used to generate private random numbers. The proof is based on elementary techniques and is self-contained.
Miller, C.
(2017),
An Elementary Proof of Private Random Number Generation from Bell Inequalities, arXiv e-Print archive, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=923946, https://arxiv.org/abs/1707.06597
(Accessed October 6, 2025)