Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Electron Beam Stimulated Spin Reorientation

Published

Author(s)

T L. Monchesky, John Unguris, Robert Celotta

Abstract

Using Scanning Electron Microscopy with Polarization Analysis (SEMPA), we observed the electron beam induced switching of the magnetic state of epitaxial single-crystal Fe(110) films grown on atomically flat cleaved GaAs(110). For low film thickness the magnetization lies along the [-110] in-plane direction, while above a thickness of 19 monolayers, the ground state magnetization configuration switches to the [001] in-plane direction. If Fe films are grown to a thickness greater than the critical thickness of the reorientation, the magnetization is caught in a metastable state, oriented along [-110]. We discovered that we can locally switch the metastable state to the stable [001] direction by irradiating the metastable magnetic state with a suitable electron current density. The reversal proceeds by the nucleation and growth of lancet-shaped domains that move in discrete jumps between pinning sites. Our results show that there is a permanent reduction of the strength of defect sites without a permanent change in the overall anisotropy. We demonstrate how an electron beam can be used to locally control domain structure.
Citation
Journal of Applied Physics
Volume
93
Issue
10

Keywords

Fe, GaAs(110), magnetic domain wall, SEMPA, spin-reorientation transition

Citation

Monchesky, T. , Unguris, J. and Celotta, R. (2003), Electron Beam Stimulated Spin Reorientation, Journal of Applied Physics (Accessed May 17, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created May 14, 2003, Updated October 12, 2021