Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Elastic, adhesive, and charge transport properties of a metal-molecule-metal junction: the role of molecular orientation, order, and coverage

Published

Author(s)

Frank W. DelRio, Kristen L. Steffens, Cherno Jaye, Daniel A. Fischer, Robert F. Cook

Abstract

The elastic, adhesive, and charge transport properties of a metal-molecule-metal junction are studied via conducting-probe atomic force microscopy (AFM) and correlated with molecular structure by near edge x-ray absorption fine structure (NEXAFS) spectroscopy. The junctions consisted of Co-Cr-coated AFM tips in contact with methyl-terminated alkanethiols (CH3(CH2)n 1SH, denoted by Cn, where n is the number of carbons in the molecular chain) on Au substrates. AFM contact data were analyzed with the Derjaguin-Muller-Toporov (DMT) contact model, modified by a first-order elastic perturbation method to account for substrate effects, and a parabolic tunneling model, appropriate for a metal-insulator-metal junction where the thickness of the insulator is comparable to the Fermi wavelength of the conducting electrons. NEXAFS carbon K-edge spectra were used to compute the dichroic ratio RI for each film, which provided a quantitative measure of the molecular structure as a function of n. As n decreased from 18 to 5, there was a change in the molecular phase from crystalline to amorphous (RI  0) and loss of surface coverage (intensity of the NEXAFS C=C * resonance peak increased), and as a result, the work of adhesion w increased from 82.8 mJ m−2 to 168.3 mJ m−2, the Young s modulus of the film Efilm decreased from 1.0 GPa to 0.15 GPa, and the barrier height 0−EF decreased from 2.4 eV to 2.1 eV. For all n, the barrier thickness t decreased for small applied loads F and remained constant at ~ 2.2 nm for large F. One possible explanation for the change in behavior is the presence of two insulating layers: an oxide layer on the Co-Cr tip and the alkanethiol monolayer on the Au surface. XPS confirmed the presence of an oxide layer on the Co-Cr tip, and by performing high resolution region scans through the film, the thickness of the oxide layer toxide was found to be between 1.9 nm and 3.9 nm. Finally, it is shown that 0−EF is strain-dependent and the strain at which the film is completely displaced from under the tip is − 0.17 for all values of n.
Citation
Langmuir

Keywords

self assembled monolayers, atomic force microscopy
Created May 20, 2010, Updated February 19, 2017