Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Efficient electrically-powered CO2-to-ethanol via suppression of deoxygenation

Published

Author(s)

Xue Wang, Wang Ziyun, F. P. Garcia de Arquer, Cao-Thang Dinh, Adnan Ozden, Yuguang C. Li, Dae-Hyun Nam, Jun Li, Yi-Sheng Liu, Joshua Wicks, Zitao Chen, Miaofang Chi, Bin Chen, Ying Wang, Jason Tam, Jane Y. Howe, Andrew Proppe, Peter Todrovic, Fengwang Li, Tao-Tao Zhuang, Christine M. Garbardo, Ahmad R. Kirmani, Christopher McCallum, Yanwei Lum, Mingchuan Luo, Yimeng Min, Aoni Xu, Colin P. O'Brien, Bello Stephen, Bin Sun, Alexander H. Ip, Lee J. Richter, Shana O. Kelley, David Sinton, Edward H. Sargent

Abstract

The carbon dioxide electroreduction reaction (CO2RR) provides avenues to the production renewable ethanol, a high-energy-density fuel. Unfortunately, until now, the ethanol Faradaic efficiency (FE) has lain below 27% in CO2RR studies reported at total current density higher than 10 mA cm-2. Here we report a new class of catalysts that achieve a record ethanol FE of (52 ± 1) %; as well as a record ethanol cathodic energy efficiency (EE) of 31%. These performance metrics constitute a 2x increase in both ethanol FE, and also in cathodic EE, compared to the most efficient >10 mA cm-2 prior studies. We started from the recognition that the suppression of intermediate HOCCH* deoxygenation to ethylene could promote ethanol production. We reasoned that the confinement of capping layers with strong electron-donating ability on active catalysts could promote C-C coupling and increase the reaction energy of HOCCH* deoxygenation. To implement this concept, we developed an electrocatalyst having a confined reaction volume, achieved by overcoating Cu catalysts with nitrogen-doped carbon (N-C). Raman and X-ray absorption spectroscopy suggest that the strong electron-donating ability and confinement of N-C layers leads to the pronounced selectivity towards ethanol.
Citation
Nature Energy
Volume
5

Keywords

Carbon dioxide, electroreduction, catalysis, ethanol, fuel

Citation

Wang, X. , Ziyun, W. , Garcia de Arquer, F. , Dinh, C. , Ozden, A. , Li, Y. , Nam, D. , Li, J. , Liu, Y. , Wicks, J. , Chen, Z. , Chi, M. , Chen, B. , Wang, Y. , Tam, J. , Howe, J. , Proppe, A. , Todrovic, P. , Li, F. , Zhuang, T. , Garbardo, C. , Kirmani, A. , McCallum, C. , Lum, Y. , Luo, M. , Min, Y. , Xu, A. , O'Brien, C. , Stephen, B. , Sun, B. , Ip, A. , Richter, L. , kelley, S. , Sinton, D. and Sargent, E. (2020), Efficient electrically-powered CO2-to-ethanol via suppression of deoxygenation, Nature Energy, [online], https://doi.org/10.1038/s41560-020-0607-8 (Accessed May 2, 2024)
Created May 11, 2020, Updated April 11, 2023