NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Efficiency Comparison of Single- and Multiple-Macrostate Grand Canonical Ensemble Transition-Matrix Monte Carlo Simulations
Published
Author(s)
Harold Hatch, Daniel Siderius, Jeffrey Errington, Vincent K. Shen
Abstract
Recent interest in parallelizing flat-histogram transition-matrix Monte Carlo simulations in the grand canonical ensemble, due to its demonstrated effectiveness in studying phase behavior, self-assembly and adsorption, has led to the most extreme case of single-macrostate simulations, where each macrostate is simulated independently with ghost particle insertions and deletions. Despite their use in several studies, no efficiency comparisons of these single-macrostate simulations have been made with multiple-macrostate simulations. We show that multiple-macrostate simulations are up to 3 orders of magnitude more efficient than single-macrostate simulations, which demonstrates the remarkable efficiency of flat-histogram biased insertions and deletions, even with low acceptance probabilities. Efficiency comparisons were made for supercritical fluids and vapor–liquid equilibrium of bulk Lennard-Jones and a three-site water model, self-assembling patchy trimer particles and adsorption of a Lennard-Jones fluid confined in a purely repulsive porous network, using the open source simulation toolkit FEASST. By directly comparing with a variety of Monte Carlo trial move sets, this efficiency loss in single-macrostate simulations is attributed to three related reasons. First, ghost particle insertions and deletions in single-macrostate simulations incur the same computational expense as grand canonical ensemble trials in multiple-macrostate simulations, yet ghost trials do not reap the sampling benefit from propagating the Markov chain to a new microstate. Second, single-macrostate simulations lack macrostate change trials that are biased by the self-consistently converging relative macrostate probability, which is a major component of flat histogram simulations. Third, limiting a Markov chain to a single macrostate reduces sampling possibilities. Existing parallelization methods for multiple-macrostate flat-histogram simulations are shown to be more efficient than parallel single-macrostate simulations by approximately an order of magnitude or more in all systems investigated.
Hatch, H.
, Siderius, D.
, Errington, J.
and Shen, V.
(2023),
Efficiency Comparison of Single- and Multiple-Macrostate Grand Canonical Ensemble Transition-Matrix Monte Carlo Simulations, Journal of Physical Chemistry B, [online], https://doi.org/10.1021/acs.jpcb.3c00613, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=935951
(Accessed October 13, 2025)