NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Michael Gullans, Yidan Wang, Jeff D. Thompson, Qiyu Liang, Vladan Vuletic, Mikhail D. Lukin, Alexey V. Gorshkov
Abstract
We develop an effective field theory (EFT) to describe the few- and many-body propagation of one- dimensional Rydberg polaritons. We show that the photonic transmission through the Rydberg medium can be found by mapping the propagation problem to a nonequilibrium quench, where the role of time and space are reversed. We include effective range corrections in the EFT and show that they dominate the dynamics near scattering resonances in the presence of deep bound states. Finally, we show how the long-range nature of the Rydberg- Rydberg interactions induces strong effective N-body interactions between Rydberg polaritons. These results pave the way towards studying nonperturbative effects in quantum field theories using Rydberg polaritons.
Gullans, M.
, Wang, Y.
, Thompson, J.
, Liang, Q.
, Vuletic, V.
, Lukin, M.
and Gorshkov, A.
(2016),
Effective Field Theory for Rydberg Polaritons, Physical Review Letters, [online], https://doi.org/10.1103/PhysRevLett.117.113601
(Accessed October 12, 2025)