Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Effect of Vapor Cell Geometry on Rydberg Atom-based Radio-frequency Electric Field Measurements

Published

Author(s)

Christopher L. Holloway, Joshua A. Gordon

Abstract

A new approach to detect absolute radio-frequency (RF) electric fields (E-fields) that uses Rydberg atoms at room temperature in vapor cells has recently been demonstrated. The large transition dipole moments between energetically adjacent Rydberg states enable this technique to make traceable E-field measurements with high sensitivity over a large frequency range, from 1 GHz to 1 THz. In this paper, we experimentally investigate how the vapor cell geometry affects the accuracy of the measurements. We find that the effects of the vapor cell on the measured RF E-field can be minimized by making the vapor cell size small compared to the wavelength of the RF E-field. 1
Citation
Physical Review Applied

Keywords

Atom-base metrology, EIT, Electric field measurements, Rydberg atoms

Citation

Holloway, C. and Gordon, J. (2015), Effect of Vapor Cell Geometry on Rydberg Atom-based Radio-frequency Electric Field Measurements, Physical Review Applied, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=918728 (Accessed October 14, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created July 15, 2015, Updated January 27, 2020
Was this page helpful?