Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Effect of the Spherical Indenter Tip Assumption on Nanoindentation

Published

Author(s)

Li Ma, Lyle E. Levine

Abstract

Nanoindentation is increasingly being used to explore mechanical properties on a local scale. One of the interests and challenges of nanoindentation is determining the shear stress at the onset of plastic yielding, which corresponds to dislocation nucleation. To extract this stress information from experimental load-displacement data, a spherical tip shape is usually assumed. However, it is well known that indenter tips have irregular shapes, especially at the small length scales that are important for small loads. This will significantly affect the stress distribution under the indentation surfaces. In this work, an indenter tip shape is measured by atomic force microscopy (AFM). The measured indenter shape is input into a finite element model for indentation simulations on <111> oriented single crystal Al samples in the elastic regime. The stresses, indentation force and contact area calculated using the measured indenter shape are analyzed and compared to results from a fitted spherical indenter. The bias of the assumed spherical indenter tip from the real measured indenter tip is studied.
Citation
Journal of Materials Research

Keywords

AFM, FEA, indenter tip, nanoindentation

Citation

Ma, L. and Levine, L. (2007), Effect of the Spherical Indenter Tip Assumption on Nanoindentation, Journal of Materials Research (Accessed May 7, 2024)
Created May 31, 2007, Updated October 12, 2021