Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Effect of Cellulose Nanocrystals on Crystallization Kinetics of Polycaprolactone as Probed by Rheo- Raman

Published

Author(s)

Debjani Roy, Anthony P. Kotula, Bharath NMN Natarajan, Jeffrey W. Gilman, Douglas M. Fox, Kalman D. Migler

Abstract

The development of biocompatible polymer nano-composites from renewable sources is a longstanding goal in sustainable materials. When the matrix is semi-crystalline, the nanoparticles may induce significant changes to crystallization kinetics and morphology due to their ability to act as nucleating agents. To fully model this behavior in a process line, an understanding of the relationship between crystallinity and modulus is required. Here, we introduce a scalable model system consisting of a surface-compatibilized cellulose nanocrystals (CNC) dispersed into poly(- caprolactone) (PCL) and study the effects of nanoparticle content on isothermal crystallization kinetics. The dispersion is accomplished by exchange of the Na+ of sulfated cellulose nanocrystals by tetra-butyl ammonium cations (Bu4N+) followed by melt mixing via twin-screw extrusion. Crystallization kinetics are measured through the recently developed rheo-Raman instrument which extracts the relationship between the growth of mechanical modulus and that of crystallinity. With extrusion and increasing CNC content, we find the expected enhancement of crystallization rate, but we moreover find a significant change in the relative kinetics of growth of modulus versus crystallinity. We analyze this via generalized effective medium theory which allows computation of a critical percolation threshold ξ_c and discuss the results in terms of a change in nucleation density and a change in the anisotropy of crystallization.
Citation
Polymer
Volume
153

Keywords

rheology, crystallization, cellulose nanocrystals
Created September 26, 2018, Updated March 1, 2019