Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Effect of Adjacent Hydrophilic Polymer Thin Films on Physical Aging and Residual Stress in Thin Films of Poly(butylnorbornene-ran-hydroxyhexafluoroisopropyl norbornene)

Published

Author(s)

Elizabeth A. Lewis, Christopher Stafford, Bryan D. Vogt

Abstract

The properties of thin supported polymer films can be dramatically impacted by the substrate upon which it resides. A simple way to alter the properties of the substrate (chemistry, rigidity, dynamics) is by coating it with an immiscible polymer. Here we describe how ultrathin (ca. 2 nm) hydrophilic polymer layers of poly(acrylic acid), PAA, and poly(styrenesulfonate), PSS, impact the aging behavior and the residual stress in thin films of poly(butylnorbornene- ran-hydroxyhexafluoroisopropyl norbornene), BuNB-r-HFANB. The aging rate decreases as the film thickness (h) is decreased, but the extent of this change depends on the adjacent layer. Even for the thickest films (h>500 nm), there is a decrease in the aging rate at 100 C when the BuNB-r-HFANB is in contact with PSS. In an effort to understand the origins of these differences in the physical aging behavior, the elastic modulus and residual stress (R) in the films were determined by wrinkling as a function of aging time. The change in the elastic modulus during aging does not appear to be directly correlated with the densification or expansion of the films, but the aging rates appear to roughly scale as hR-1/3. These results illustrate that the physical aging of thin polymer films can be altered by adjacent polymers.
Citation
Journal of Polymer Science Part B-Polymer Physics
Volume
57
Issue
15

Keywords

polymer, thin film, physical aging, residual stress, interfaces

Citation

Lewis, E. , Stafford, C. and Vogt, B. (2019), Effect of Adjacent Hydrophilic Polymer Thin Films on Physical Aging and Residual Stress in Thin Films of Poly(butylnorbornene-ran-hydroxyhexafluoroisopropyl norbornene), Journal of Polymer Science Part B-Polymer Physics, [online], https://doi.org/10.1002/polb.24855, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927607 (Accessed April 23, 2024)
Created June 21, 2019, Updated October 12, 2021