A Dynamic Human Body Computational Phantom for RF Propagation Study

Published: May 20, 2013


John G. Hagedorn, Kamran Sayrafian, Judith E. Terrill


Recent advances in micro-electronics technology to build small radio-enabled implantable and wearable medical sensors have sparked considerable interest in further understanding the characteristics of radio frequency propagation inside the human body. As physical experiment with human subjects is either difficult or in some cases impossible to carry out, computational phantoms offer an attractive alternative for researchers in this area. However, computational phantoms used in the literature to study such propagation characteristics are mostly static. As body motion could significantly impact the wireless communication between implants and wearable medical sensors, a dynamic computational phantom capable of emulating human motion would be a valuable tool to study and understand this impact. Here, we describe the development of a dynamic posable computational phantom for the full human body. This enhanced phantom will be used to study dynamic implant channels in a network consisting of implants and wearable sensors. Our methodology and tools along with problems encountered and their solutions are briefly discussed in this paper.
Conference Dates: May 20-22, 2013
Conference Location: Zurich, -1
Conference Title: 2013 workshop on Computational Phantoms
Pub Type: Conferences

Download Paper


radio frequency propagation, 3D immersive platform, computational phantom
Created May 20, 2013, Updated February 19, 2017