NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A Dynamic Human Body Computational Phantom for RF Propagation Study
Published
Author(s)
John G. Hagedorn, Kamran Sayrafian, Judith E. Terrill
Abstract
Recent advances in micro-electronics technology to build small radio-enabled implantable and wearable medical sensors have sparked considerable interest in further understanding the characteristics of radio frequency propagation inside the human body. As physical experiment with human subjects is either difficult or in some cases impossible to carry out, computational phantoms offer an attractive alternative for researchers in this area. However, computational phantoms used in the literature to study such propagation characteristics are mostly static. As body motion could significantly impact the wireless communication between implants and wearable medical sensors, a dynamic computational phantom capable of emulating human motion would be a valuable tool to study and understand this impact. Here, we describe the development of a dynamic posable computational phantom for the full human body. This enhanced phantom will be used to study dynamic implant channels in a network consisting of implants and wearable sensors. Our methodology and tools along with problems encountered and their solutions are briefly discussed in this paper.
Hagedorn, J.
, Sayrafian, K.
and Terrill, J.
(2013),
A Dynamic Human Body Computational Phantom for RF Propagation Study, 2013 workshop on Computational Phantoms, Zurich, CH, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=913544
(Accessed October 9, 2025)