Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Duality of Dislocation Content of Grain Boundaries

Published

Author(s)

John W. Cahn, Yuri Mishin, A Suzuki

Abstract

The Frank-Bilby equation (FBE) can give many solutions for the dislocation content of a grain boundary (GB); most of them are considered to have little physical reality except in limited ranges of the angles which characterize low-angle GBs. We explore two such solutions, each of which is an accurate description for a different low angle tile GB with the same tilt axis. We develop a model that uses the two solutions to predict the coupling factor between normal motion and the shear strain produced by any (low or high-angle) GB. Within this model, the two FBE solutions give rise to two possible modes of coupled GB motion which for the same GB uder the same stress differ in direction of motion.Using molecular dynamics simulations we confirm our model. We find positive and/or negatrive coupled GB motion for all misorientation angles, and the model gives accurate predictions for the shear produced even by high-angle GBs where individual dislocations cannot be resolved. At low temperatures dual behavior is observed for the same high-angle FB and applied stress: both coupling modes are found with a switch between them after some time. This switch signifies a change in the dislocation content. Dual behavior indicates that both solutions for the dislocation content can be meaningful for the same GB. At higher temperatures only one mode is seen for each GB under the same shear stress, and the switch between the two modes seems to occur discontinuously at some high misorientation angle.
Citation
Duality of Dislocation Content of Grain Boundaries

Keywords

copper, dislocations, Frank-Bilby, grain boundaries, simulations, stick-slip, stress

Citation

Cahn, J. , Mishin, Y. and Suzuki, A. (2017), Duality of Dislocation Content of Grain Boundaries, Duality of Dislocation Content of Grain Boundaries (Accessed October 12, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created February 19, 2017