NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Double-Resonance Lineshapes in a Cell with Wall Coating and Buffer Gas
Published
Author(s)
Svenja A. Knappe, Hugh Robinson
Abstract
Microwave double resonances were measured is a wall-coated Rb vapor cell as a function of additional buffer gas pressure. These data were compared to similar measurements in an uncoated cell. It was found that the linewidth in the coated cell displays a distinct maximum around 0.2 kPa. This agrees well with theoretical solutions of the diffusion equation assuming a complex reflection coefficient at the wall. It was furthermore found that at the intermediate pressures the lineshapes of the microwave resonances become asymmetric with a low-frequency tail. This is in agreement with the explanation that above the pressure where the alkali mean free path is substantially smaller than the average distance between wall collisions at zero pressure, there exist two classes of atoms in the cell. The atoms that get trapped near the walls accumulate much larger phase shifts compared to the ones toward the center of the cell. This effect is not seen in the longitudinal relaxation rate indicating that it is related to a phase-shift effect.
Knappe, S.
and Robinson, H.
(2010),
Double-Resonance Lineshapes in a Cell with Wall Coating and Buffer Gas, New Journal of Physics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=904448
(Accessed October 16, 2025)