Skip to main content
U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Direct Comparison of Time-Resolved Terahertz Spectroscopy and Hall Van der Pauw Methods for Measurement of Carrier Conductivity and Mobility in Bulk Semiconductors



Brian G. Alberding, W. R. Thurber, Edwin J. Heilweil


Carrier conductivity and mobility for various semiconductor wafers and crystals were measured by ultrafast above bandgap, optically excited Time-Resolved Terahertz Spectroscopy (TRTS) and Hall Van der Pauw contact methods to directly compare these approaches and validate the use of the non- contact optical approach for future materials and in-situ device analyses. Undoped and doped silicon (Si) wafers with resistances varying over six orders were selected as standards since contact Hall measurements are reliably made on this material. Conductivity and mobility obtained at room temperature by terahertz transmission and TRTS methods yields the sum of electron and hole mobility which agree very well with either directly measured or literature values for corresponding atomic and photo-doping densities. Careful evaluation of the optically-generated TRTS frequency-dependent conductivity also shows it is dominated by induced free carrier absorption rather than small probe pulse phase shifts, which is commonly ascribed to changes in the complex conductivity from sample morphology and evaluation of carrier mobility by applying Drude scattering models. Thus, in this work, real-valued, frequency-averaged conductivity were used to extract sample mobility without application of models. Examinations of germanium (Ge), gallium arsenide (GaAs), gallium phosphide (GaP) and zinc telleride (ZnTe) samples were also made to demonstrate the general applicability of the TRTS method, even for materials that do not readily make reliable contacts (e.g., ZnTe). For these cases, values for the sum of the electron and hole mobility also compare very favorably to measured or available published data.
Journal of the Optical Society of America B-Optical Physics


Terahertz spectroscopy, Hall mobility, bulk semiconductors, conductivity, carrier dynamics
Created July 7, 2017, Updated November 10, 2018