An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Dimensional Metrology of Bipolar Fuel Cell Plates Using Laser Spot Triangulation Probes
Published
Author(s)
Balasubramanian Muralikrishnan, Wei Ren, Dennis S. Everett, Eric S. Stanfield, Theodore D. Doiron
Abstract
As in any engineering component, manufacturing a bipolar fuel cell plate for a polymer electrolyte membrane (PEM) hydrogen fuel cell power stack to within its stated design tolerances is critical in achieving the intended function. In a bipolar fuel cell plate, the dimensional features of interest include channel width, channel height, channel parallelism, side wall taper, straightness of the bottom or side walls, plate parallelism, etc. Such measurements can be performed on Coordinate Measuring Machines (CMMs) with micro-probes that can access the narrow and deep channels. While CMM measurements provide high accuracy (less than 1 m), they are often very slow (several hours to measure a single plate) and unsuitable for the manufacturing environment. In this context, we describe a system for rapid dimensional measurement of bipolar fuel cell plates using two laser spot triangulation probes that can achieve comparable accuracies with those of a touch probe CMM, while offering manufacturers the possibility for 100% part inspection. We discuss the design of the system, present our approach to calibrating system parameters, present validation data, compare bipolar fuel cell plate measurement results with those obtained on a Mitutoyo UMAP [1] fiber probe CMM, and finally describe uncertainty in channel height and width measurements.
Muralikrishnan, B.
, Ren, W.
, Everett, D.
, Stanfield, E.
and Doiron, T.
(2011),
Dimensional Metrology of Bipolar Fuel Cell Plates Using Laser Spot Triangulation Probes, Measurement Science and Technology, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=907747
(Accessed October 14, 2024)