NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
This paper summarizes the basic properties of the Euler dilogarithm function, often referred to as the Spence function. These include integral representations, series expansions, linear and quadratic transformations, functional relations, numerical values for specialarguments, and its relation to the hypergeometric and generalized hypergeometric function. The basic properties of the two functions closely related to the dilogarithm -- the inverse tangent integral and Clausen's integral -- are also included. A brief summary of the definingequations and properties for the frequently utilized generalizations of the dilogarithm (polylogarithm, Nielsen's generalized polylogarithm, Lerch's transcendent) is also given. Critical references to details concerning these functions and their applications are listed.
Citation
Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences
Maximon, L.
(2003),
The Dilogarithm Function for Complex Argument, Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=150847
(Accessed October 14, 2025)