NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
On the Development and Characterization of a Firebrand Generator
Published
Author(s)
Samuel L. Manzello, John R. Shields, Thomas G. Cleary, Alexander Maranghides, William E. Mell, Jiann C. Yang, Yoshihiko Hayashi, Daisaku Nii, Tsuyoshi Kurita
Abstract
A unique experimental apparatus has been constructed in order to generate a controlled and repeatable size and mass distribution of glowing firebrands. The present study reports on a series of experiments conducted in order to characterize the performance of this firebrand generator. Firebrand generator characterization experiments were performed at the Fire Research Wind Tunnel Facility (FRWTF) at the Building Research Institute (BRI) in Tsukuba, Japan. The firebrand generator was fed with three different initial firebrand geometries, two different sized cylinders and one size of disks. Cylinders were used to simulate firebrand fluxes from vegetation, such as trees, while disks were used to simulate a firebrand flux from burning structures. Samples of these geometries were constructed from wood dowels, fed into the firebrand generator, ignited, and the glowing firebrands generated were collected using an array of water filled pans. The pans were filled with water in order to quench combustion. The collected firebrands were subsequently dried and the size and mass distribution was measured. These experiments were performed over a range of wind tunnel speeds, with no wind speed present to 9 m/s, to determine the lofting distance of the firebrands generated. Finally, the size and mass distribution produced from the firebrand generator are compared to those produced from burning trees. Results of the study are presented and discussed.
Manzello, S.
, Shields, J.
, Cleary, T.
, Maranghides, A.
, Mell, W.
, Yang, J.
, Hayashi, Y.
, Nii, D.
and Kurita, T.
(2008),
On the Development and Characterization of a Firebrand Generator, Fire Safety Journal, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=911535
(Accessed October 23, 2025)