Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Design and Performance of the New NIST Hybrid Humidity Generator

Published

Author(s)

Christopher W. Meyer, W Wyatt Miller, Dean C. Ripple, Gregory E. Scace

Abstract

A new humidity generator has been constructed at the National Institute of Standards and Technology and is now fully operational. The NIST Hybrid Humidity Generator (HHG) has replaced the Two-Pressure (2-P) Humidity Generator Mark II as the NIST primary humidity generation standard for frost/dew points from 70 C to +25 C using calibration gas flows up to 150 standard liters per minute. The HHG extends the NIST humidity generation range up to 85 C, and outperforms the 2-P Generator in terms of accuracy. The HHG combines the two-pressure and divided-flow humidity generation techniques (hence the name hybrid ). The centerpiece of the HHG is a heat-exchanger/saturator that is immersed in a temperature-controlled bath stable to within 1 mK. A precisely regulated pre-saturation process minimizes sensible and latent heat loading on the final saturator. For dew/frost point temperatures above 15 C, the two-pressure principle is employed. For frost points at or below 15 C, the divided-flow method is used. For this method, the water-vapor/air mixture is produced by mixing metered streams of moist air produced by the two-pressure principle with purified, dry air; here, the HHG saturates the wet air stream at a temperature close to the water triple point, reducing the uncertainty of the water vapor pressure. To our knowledge, this is the first primary generator that incorporates the divided-flow technique. We describe here the design of the HHG as well as the estimated uncertainty of the dew/frostpoint and mole fraction of moist air generated by it. The uncertainty estimate is based on a series of performance tests performed on the HHG. Finally, we include comparisons of the humidity generated by the HHG to that generated by the other NIST humidity-generation standards.
Citation
NCSL International Measure

Keywords

calibration, humidity, primary standard, thermodynamic generator
Created June 1, 2009, Updated February 19, 2017