Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Design of a 1 DOF MEMS motion stage for a parallel plane geometry rheometer

Published

Author(s)

Yong Sik Kim, Nicholas Dagalakis, Chiara C. Ferraris, Svetlana Avramov-Zamurovic1

Abstract

Rotational rheometers are used to measure paste properties, but the test would take too long to be useful for a quality control (QC) on the job site. In this paper, a new type of rheometer is proposed based on a one degree of freedom (DOF) micro-electro-mechanical systems (MEMS)-based motion stage. Preliminary data will be presented to show the capability of the system to measure the viscoelastic properties of a paste. The parallel plate geometry rheometer consists of two plates, which move relative to each other to apply a strain to the material to be tested. From the stress measured and the strain applied the rheological characteristics of the material can be calculated. The new device consists of an electrothermal actuator and a motion plate. For the rheological measurements, the device is designed to generate the shear stress up to 60 Pa and maintain its stiffness to less than 44 N/m. With these features, the device uses a square plate of 1.5 mm x 1.5 to provide enough area for a few micro-liter level volumes. The motion of the square plate is monitored by a capacitive sensor at the end of the oscillating plate which shows the resolution of 1.06 µm. When a reference cementitious paste, SRM-2492 is placed between the oscillating plate of the presented motion stage and a fixed plate, the reduction in the displacement of the oscillating plate is monitored showing that the presented motion stage is reasonable designed to detect the response of the reference cementitious paste.
Citation
Electronics
Volume
19
Issue
2

Keywords

MEMS, motion stage, electrothermal actuator, rheology, Cement paste

Citation

Kim, Y. , Dagalakis, N. , Ferraris, C. and Avramov-Zamurovic1, S. (2015), Design of a 1 DOF MEMS motion stage for a parallel plane geometry rheometer, Electronics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919745 (Accessed April 23, 2024)
Created December 30, 2015, Updated October 12, 2021