NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Deep Learning for Path Loss Prediction at 7 GHz in Urban Environment
Published
Author(s)
Thao T. Nguyen, Nadia Yoza Mitsuishi, Raied Caromi
Abstract
In the 6 GHz spectrum sharing band, unlicensed devices are managed by automated frequency coordination (AFC) systems to protect incumbent services from interference. Thus, it is important to select accurate propagation models for interference calculation and analysis. This paper utilizes a model-aided deep learning technique for path loss prediction at 7 GHz, as a representative frequency within the 6 GHz band, in an urban environment. The proposed model is a hybrid model, which leverages both domain expert knowledge from a physics-based general-purposed channel model as well as the learning-based capability from a neural network, for path loss prediction. The model is trained and tested using sufficient-quantity and high-quality real propagation measurement data collected in four locations in an urban environment. Numerical results show that the deep learning model provides a better prediction performance than most empirical models. Furthermore, the feasibility of proposed model generalization to new locations after fine-tuning is examined.
Nguyen, T.
, Yoza Mitsuishi, N.
and Caromi, R.
(2023),
Deep Learning for Path Loss Prediction at 7 GHz in Urban Environment, IEEE Access Journal, [online], https://doi.org/10.1109/ACCESS.2023.3264230, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=935303
(Accessed October 9, 2025)