Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Crystal Structure of Ba27Fe16Ti33O117



T Siegrist, Terrell A. Vanderah, C Svensson, Robert S. Roth


Single-crystal X-ray diffraction studies indicate that the compound Ba27Fe16Ti33O117- crystallizes in the rhombohedral space group R-3m, with a hexagonal unit cell a=5.7400(8) , c=127.11(3) ; Z=1.5. The arrangement may be described as a 54-layer (54L) close-packed structure (stacking sequence (cch)18) built from oxygen and Ba,O} layers, with Ti4+ occupying octahedra and Fe3+ occupying both octahedral and tetrahedral interstices.The 54L structure contains hexagonal 6L BaTiO3-type (cch)2 units via a 9-fold repeat of the 6L stacking sequence, with iron preferentially occupying layers centered around z=1/6. Ba27Fe16Ti33O117 melts incongruently at 1270 C and is difficult to purify in polycrystalline form, although crystals are easily obtained from partial melts. The new compound is a member of a family of ternary Ba-Fe-Ti-O phases that may be considered as dielectric-magnetic hybrids of barium-polytitanate and barium-hexaferrite crystal chemistries.
Solid State Sciences
No. 7


Ba<sub>27</sub>Fe<sub>16</sub>Ti<sub>d</sub>O<sub>117</sub>, barium iron titanates, barium iron titantium oxide


Siegrist, T. , Vanderah, T. , Svensson, C. and Roth, R. (2002), Crystal Structure of Ba<sub>27</sub>Fe<sub>16</sub>Ti<sub>33</sub>O<sub>117</sub>, Solid State Sciences (Accessed May 23, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created June 30, 2002, Updated October 12, 2021