Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

On the Cross-Application of Calibrated Pathloss Models using Area Features: Finding a Way to Determine Similarity Between Areas

Published

Author(s)

Jiayi Zhang, Camillo Gentile, Wesley Garey

Abstract

Pathloss-model calibration is the practice of refining the nominal parameters of a model according to measurement samples collected in a specific area. It is a widely used by mobile providers to reduce prediction error up to tens of dBs depending on the model category. It comes, however, at the expense of both time and monetary resources. Because the resources required to calibrate all deployment areas are prohibitive, a selection from a representative set of calibrated models can be applied to an are with no measurement data; we refer to this practice as model cross-application. How well the model predicts will depend on the similarity between the two areas. In this article, we propose a methodology for cross-application in which we identify the most effective features to determine area similarity. To do so, we analyzed over three million measurement samples from five metropolitan regions throughout the United States - comprising urban, suburban, and rural environments - while considering a broad range of model categories, from purely empirical to highly deterministic. We also validated the performance of the models per environment, both in terms of absolute prediction error and in terms of error reduction due to calibration.
Citation
IEEE Antennas and Propagation Magazine
Volume
62
Issue
1

Keywords

prediction, tuning, signature, fingerprint

Citation

Zhang, J. , Gentile, C. and Garey, W. (2020), On the Cross-Application of Calibrated Pathloss Models using Area Features: Finding a Way to Determine Similarity Between Areas, IEEE Antennas and Propagation Magazine, [online], https://doi.org/10.1109/MAP.2019.2943272, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=926412 (Accessed October 3, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created January 31, 2020, Updated October 12, 2021
Was this page helpful?