Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Cracking of Porcelain Coatings Bonded to Metal Substrates of Different Modulus and Hardness



H Zhao, X Z. Hu, M T. Bush, Brian R. Lawn


A preceding study of contact damage in a bilayer system consisting of a porcelain coating on a stiff Pd-alloy substrate is here expanded to investigate the role of substrate modulus and hardness. Bilayers are made by fusing the same dental porcelain onto Co-, Pd- and Au-alloy metal bases. Indentations are made on the porcelain surfaces using spheres of radii 2.38 and 3.98 mm. Critical loads to initiate cone fracture at the top surface of the porcelain and yield in the substrate below the contact are measured as a function of porcelain thickness. Radial cracks form at the lower surface of the coating once the substrate yield is well developed. By virtue of its controlling role in the metal yield process, substrate hardness is revealed to be a key material parameter-substrate modulus plays a secondary role. A simple elasticity-based analysis for predetermining critical loads for a given brittle/plastic bilayer system is presented.
Journal of Materials Research
No. 5


brittle coatings, cone cracks, hardness, indentation, metal substrates, modulus mismatch, radial cracks, yield


Zhao, H. , Hu, X. , Bush, M. and Lawn, B. (2001), Cracking of Porcelain Coatings Bonded to Metal Substrates of Different Modulus and Hardness, Journal of Materials Research (Accessed June 22, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created April 30, 2001, Updated October 12, 2021