Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Controlling Atomic Interactions with Light



Ross A. Williams, Lindsay J. LeBlanc, Karina K. Jimenez Garcia, Matthew C. Beeler, Abigail R. Perry, William D. Phillips, Ian B. Spielman


For the majority of the 20th century atomic physicists used light to probe and understand atoms. Today, scientists use light to manipulate particles with unprecedented levels of control, routinely cooling atoms to a few billionths of a degree above absolute zero. This precision control is vital for applications including atomic clocks, quantum computing, and the use of ultracold quantum gases for studying many-body physics, that is, as a realization of Feynman’s concept of a quantum simulator. Now, we report on the ability to use light to modify the interactions between atoms in a fundamentally new way.
Optics & Photonics News


Bose-Einstein condensate, spin-orbit coupling, ultracold atomic collisions


Williams, R. , LeBlanc, L. , Jimenez, K. , Beeler, M. , Perry, A. , Phillips, W. and Spielman, I. (2012), Controlling Atomic Interactions with Light, Optics & Photonics News (Accessed July 14, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created December 1, 2012, Updated February 19, 2017