Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Contactless mobility measurements using two-photon excitation and a terahertz probe

Published

Author(s)

Jared K. Wahlstrand, Edwin J. Heilweil

Abstract

Time-dependent THz spectroscopy is widely used for measuring mobility in novel electronic materials, in which the mobility is often adversely affected by defects and unintentional dopants [1]. One of its great advantages over other techniques is that it does not require ohmic contacts. Recently, it was shown that the mobility values extracted from optical-pump, THz-probe measurements are consistent with contact-based Hall Van der Pauw measurements [2]. However, because of the sub-micron penetration depth of above band gap light in direct bandgap semiconductors, the carrier densities required to produce a measurable change in THz transmission are high enough that the mobility can be reduced by electron-electron scattering. Below gap two-photon excitation offers an alternative since it is able to excite carriers throughout the entire semiconductor thickness at once, resulting in a significantly lower carrier density for the same amount of THz absorption. We present results for ZnSe and GaP and compare the THz measurements to conventional z-scan and pump absorption on the same samples.
Proceedings Title
APS March Meeting 2018 Scientific Program
Conference Dates
March 5-9, 2018
Conference Location
Los Angeles, CA

Keywords

mobility, two-photon, terahertz, semiconductors, nonlinear optics

Citation

Wahlstrand, J. and Heilweil, E. (2018), Contactless mobility measurements using two-photon excitation and a terahertz probe, APS March Meeting 2018 Scientific Program, Los Angeles, CA (Accessed March 29, 2024)
Created March 6, 2018