NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Connection Between Surface Magnetism and Electronic Structure of Oxygen on Ni(110)
Published
Author(s)
A Seiler, C Feigerle, J Pena, Robert Celotta, Daniel T. Pierce
Abstract
The d-band holes which give rise to ferromagnetism in Ni can be directly observed by spin-polarized inverse photoelectron spectroscopy (SPIPES). Only incident electrons polarized in the minority spin direction can fall into unfilled minority spin states and radiate a detected photon. On dissociative chemisorption of O2 we observe a reduction in the number of minority spin d holes. It is this change in electronic structure which gives rise to a decrease in magnetization. A background of minority and majority spin states remains essentially unchanged. Further exposure to oxygen causes formation of NiO; the surface magnetization goes to zero, and a completely different SPIPES spectrum is observed. The relative importance of d electrons and s, p electrons in chemisorptive bonding on Ni has been much discussed. These data suggest that the d states interact strongly with the oxygen and that this interaction has a profound influence on the surface magnetism.
Seiler, A.
, Feigerle, C.
, Pena, J.
, Celotta, R.
and Pierce, D.
(1985),
Connection Between Surface Magnetism and Electronic Structure of Oxygen on Ni(110), Journal of Applied Physics
(Accessed October 21, 2025)