Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Computational Design of New Refrigerant Fluids Based on Environmental, Safety, and Thermodynamic Characteristics

Published

Author(s)

Andrei F. Kazakov, Mark O. McLinden, Michael D. Frenkel

Abstract

We present a systematic search for new classes of refrigerants that would possess low values of Global Warming Potential (GWP), along with low- to moderate flammability and suitable thermodynamic characteristics. We have developed new methods for estimating, solely from the molecular structure, the radiative efficiency (RE, a measure of radiative climate forcing) and atmospheric lifetime; the combination of RE and lifetime yield an estimate of the GWP. We also developed an estimate of the lower flammability limit (LFL) based on the enthalpy of formation. These estimation techniques, along with a previously developed technique for estimating critical temperature ($T_{\mathrm{c}}$), are applied to a library of over 56000 candidate molecules. We select fluids with GWP$0.1$ $\mathrm{kg}\cdot\mathrm{m}^{-3}$. Filters for toxicity and chemical stability based on functional groups are also applied to arrive at 1234 candidates for further study. The candidates that would be suitable for use in present types of refrigeration equipment (those having critical temperatures less than 400 K) are dominated by halogenated alkenes; additional chemical classes, including halogenated ethers and cyclic compounds, are identified among fluids with higher critical temperatures.
Citation
Industrial and Engineering Chemistry Research

Keywords

global warming potential, refrigerants, virtual screening
Created September 17, 2012, Updated November 10, 2018