Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Collisional Frequency Shifts in 133Cs Fountain Clocks



P J. Leo, Paul S. Julienne, F H. Mies, Carl J. Williams


We present a theoretical analysis of the pressure shift in Cs fountain clocks using the highly constrained binary collision model described by Leo et al. [Phys. Rev. Lett. xx, xx (2000)]. We predict a reversal in the pressure shift at temperatures near 0.08 K which could allow elimination of a large source of uncertainty in the Cs fountain clock. Our results show that s-waves dominate the collision process however as a consequence of the large scattering lengths in Cs the pressure shift is strongly temperature dependent and does not reach a constant Wigner-law value until temperatures are less than 0.1 nK.
Physical Review Letters
No. 17


cesium, clock shift, fountain clock, ultracold scattering


Leo, P. , Julienne, P. , Mies, F. and Williams, C. (2001), Collisional Frequency Shifts in <sup>133</sup>Cs Fountain Clocks, Physical Review Letters (Accessed May 28, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created April 1, 2001, Updated February 17, 2017