NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Colliding Self-Assembly Waves in Organosilane Monolayers
Author(s)
K Efimenko, Ali Ozcam, Jan Genzer, Daniel A. Fischer, Frederick R. Phelan Jr., Jack F. Douglas
Abstract
Colliding autocatalytic wave-fronts of organosilane (OS) layer self-assembly are generated through the controlled positioning of sources of the volatile OS material at the edges of a silica wafer and through adjustment of the container dimensions in which the wafer-source system is placed. The concentration profiles and molecular orientation of the OSs of colliding wave-fronts are assessed by means of combinatorial near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. For systems involving waves made of the same OS precursor (homogeneous systems), the shapes and positions of both fronts on the surface are centro-symmetrical. In contrast, heterogeneous systems, involving OSs having different chemistries and head-groups, exhibit highly non-symmetrical concentration profiles on the substrate. We discuss effects relevant to understanding these wave-front collision phenomena.
Efimenko, K.
, Ozcam, A.
, Genzer, J.
, Fischer, D.
, Phelan, F.
and Douglas, J.
(1970),
Colliding Self-Assembly Waves in Organosilane Monolayers, Wiley, New York, NY
(Accessed October 11, 2025)